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Mathematics - Course 121

SAFETY SYSTEMS ANALYSIS - SOLUTIONS TO SAMPLE PROBLEMS

Example 1

A passive safety system is tested on the first of each
month. If a test reveals that the component has failed, it can
be repaired within a few minutes and returned to service. The
performance for one year is summarized on the time line below,
\A/here "x II denotes "component failed II I and "./11 denotes IIcompon­
ent operates satisfactorily".
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Question

What is the unavailability of this component?

Definition

The unavailability of a component is the fraction of time
the component is unable to perform its intended purpose.

Logically, the probability that a component is unavailable
at any randomly chosen instant equals the component's unavaila­
bility. For example, if a component is unavailable 2% of the
time, the probability is 2% that it will not perform its inten­
ded purpose if called upon at any randomly chosen instant. The
distinction between the unavailability and unreliability of a
component was drawn in lesson 121.00-4. For the moment, suf­
fice it to say that the unavailability of a component may be
regarded as the average value (expectation) of the time-depend­
ent unreliability, provided that unavailability due to the
testing process itself and due to repair time is negligible.

Based on the preceding definition and the scant data in
this example, the component unavailability, Q, is defined as:

Q = fraction of time component unavailable

= (number of failures/year) (downtime in years per failure)

(3 fai1ures/y) (1/2 x 1/12 y/fai1ure)

= 1/8
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Notes

1. The
terval, not the whole test interval. The rationale for
this is as-follows: with reference to the following diagram
showing the time interval between consecutive tests, the
component failure detected at C could have taken place
immediately following the previous test at A, just prior
to test C, or at any instant B between A and C:

A

I
B c

I
X

Thus, the time interval during which the component was
actually unavailable could have been anything from zero
up to the full test interval, T, but the average downtime
per failure should be T/2. Hence, the component unavaila­
bility can be calculated via the formula:

~*
~

where Q is the component unavailability (no units)
A is the failure rate in failures per component­

year, and
T is the test interval in years.

2. More accurately, the downtime per failure should include
the average repair time, r, so that

Q = A(! + r)
2

However, if r « i, which is often the case, r may be
neglected. Trainees should assume r can be neglected un­
less told otherwise In course assignments and check-out
questions.

* In fact, because the failure distribution function falls
exponentially over the test interval (see lesson 121.00-8),
the average downtime per failure is not exactly T/2. However,
as shown in 121.00-8, Appendix, this formula is an excellent
approximation providing AT «1.
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3. The question naturally arises as to how confident one can
be that the unavailability in this example is less than or
equal to 1/8, especially in view of the very scant data
base available. Obviously, one could be far more confident
in this result if it were based on observing, say, 30 fail­
ures over a ten year interval rather than on just 3 fail­
ures over a one year interval. The question of confidence
limits is treated briefly in Appendix 1, lesson 121.10-1.

Example 2

Calculate the unavailability of the protective system of a
reactor if 22 failures have been detected during 4 years opera­
tion. Failures are detected and corrected at the beginning of
each shift.

Solution

T
Q = A 2"

1 1
22 3" x 365

= T x 2

= 3 x 10-3

Note that unavailabilities based on such poor statistical
bases are seldom quoted to more than one or two significant
failures.

Example 3

A safety system containing 12 identical components is test­
ed weekly. Eleven component failures have been discovered dur­
ing 7 years operation. Calculate the component unavailability.

Solution

T
Q = A 2"

1
11 52= x T12 x 7

= 1.3 x 10- 3
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Example 4

Assume that ~ne expectea Irequency of a complete unsafe
failure of the NPD regulating system is once every 2 years.
What is the annual risk of power excursions if the failure rate
of the protective system is:

a) Complete system failure occurs once each year and the
system remains in the failed state for 1 day.

b) Complete system failure occurs 6 times each year and
failures are detected and corrected at the beginning of
each shift.

Solution

a) The annual risk of a power excursion (ARPE) is the proba­
bility of at least one excursion during one year. This is
numerically nearly equal to the expected annual frequency
of excursions (see lesson 121.00-8, Appendix, Section I).

ARPE = annual number of losses of regulation (LORIs) for
which the protective system is unavailable

= ARQp'

where AR = number LORIs/year

= 1/2 per year

and Op = unavailability of protective system

= 1/365 year

ARPE = 1/2 (1/365)

= 1.4 x 10-3

b} Using Op
system,

Tp
= Ap ~ for the unavailability of the protective

ARPE

1 1
1 3" x 365
'2 x 6 x 2

= 1.4 x 10- 3
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Example 5

Information

Assume the following results were obtained in NPD Safety
system tests over a 5 year period.

a) 13 protective system single channel failures - each channel
tested every 2 days.

b) 12 Reactor Vault dousing valve failures - each valve test­
ed once per month.

c) 12 Reactor Vault containment damper failures - each damper
tested twice per year.

Unsafe failure of safety systems are defined as the events:

Protective system - E,: 2 or more of the 3 independent
channels in a failed ~ondition simultaneously.

Reactor Vault containment system - E2 : 1 or more of the 2
dousing valves in a failed condition or E3: both of the
double containment dampers in either the inlet or outlet
ducting in a failed condition.

Problem

If the expected frequency of unsafe regulating system fail­
ures is 10-1 per year what is the annual probability of:

a) A nuclear incident resulting from coincident failure of the
regulating and protective system.

b) A nuclear accident resulting from coincident failure of the
regulating, protective and Reactor Vault containment systems.

Solution

a) As in Example 4, the annual risk of a power excursion
(ARPE) due to coincident failure of regulating and pro­
tective systems is given by:

ARPE = ARQp'

where Qp = P(El )

3C2Qc
2R + 3C3Qc

3= c ,

(1)

(2)
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where the unavailability of a channel,

Qc = A
Tc

c T

2
13 365= x -2-3 x 5

= 2.4 x 10- 3 (3)

{The channel availability R = l-Q
c c

Note that the binomial coefficients 3C2 and ~C3 in equa­
tion (2) account for the numbers of possible comblnations of 2
failed channels and 3 failed channels, respectively, from 3
channels. Substituting (3) in (2) gives

-5= 1. 7 x 10

Substituting (4) in (1) gives

ARPE = 1.7 x 10-6

(4 )

(5 )

b) The annual risk of a nuclear accident (ARNA) is found as
follows:

ARNA = annual number of LOR's for which both Protective
and Containment systems are unavailable*

(6)

where AR = annual frequency of LOR's

Qp = unavailability of protective system, and

QCT = unavailability of containment system.

* Again, the RHS of this expression is actually the expected
annual frequency of nuclear accidents, but this is numerically
nearly equal to the probability of one or more accidents per
annum, providing ARQpQCT « 1 (see 121.00-8, Appendix, Section
I) •

- 6 -



121.00-5

Now Q,..,m = P(E., U EO)
'-'..L ... .J

= P(E2 ) + P(E 3 ) - P(E2 )P(E
3

) .•. PR3 (7)

Let Qv ' QD represent unavai1abilities of a dousing valve,
and a containment damper, respectively.

Then P(E2 )= 2CI QvRv +
2 (8)2C2QV

where Qv = Av
Tv
T

1
12 12

= xT2 x 5

= 0.05 (9)

P(E2 ) = 0.098 (from (9 ) in (8) ) (10)

And P (E 3 ) Q
D

2 + Q 2 Q 4 (11)=
D D

where QD AD
TD= T

1
12 2"

= x -
4 x 5 2

= 0.15 (12)

P(E
3

) = 0.044 ( (12) in (11) ) (13 )

QCT
= 0.14 ( (10) and (13) in (7) ) (14)

ARNA = 2 x 10-7 ( (4) and (14) in (6 »
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Dousing tank and lines - 1 x 10- 3

Control circuits - 4 x 10-4

Exhaust damper - 1 x 10-3

Isolation dampers 3 x 10-3

Dousing valves unknown

121.00-5

Example 6

Information

The target or maximum permitted unavailability for the NPD
Reactor Vault containment provisions is 10-2 . Assume only the
following groups of components can cause unsafe system failure
and that the expected unavailability of each group is as indicated:

= Qd

= Qe

Two dousing valves are provided, both of which must operate
to prevent a nuclear accident.

Problem

If experience shows that each dousing valve will fail un­
safely once every 20 years, how often should the valves be tested?

Solution

Qa + Q
b

+ Qc + Q
d

+ Qe = 10-2

Substituting given values of Qa' Qb' QC' Qd gives

Q = 4.6 x 10-3
e

= P{at least one dousing valve fails)

= 1 - P(both valves survive)

= 1 - (1 - Qv )2

where Qv = dousing valve unavailability

Substituting (1) in (2) gives

"'~V

ie,
TV

A•• _ =
v 2 2.3 x 10-3 1= 20 flY)

TV = 0.092 years

a suitable test frequency is once per month.
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ASSIGNMENT

In 12 years of
strument lines
were detected.
annually. What
detection line?

1. operation ot 30 pressure detection in­
in the containment system, 5 failures
The instrumentation is tested semi­
is the unavailability of a pressure

2. In 12 years of operation of 6 dump valves, 3 failures
were found. The dump valves are tested twice weekly.
Determine the valve unavailability.

3. Two pumps Pl and P 2 operate in series. Pl raises line
pressure to meet P2's intake requirements. The system
will fail if either pump fails. If Pl and P2 have
unreliabilities of 1.2 x 10-2 and 5 x 10-3 , respect-
ively, calculate systern

4. Two 2identical pumps, each with unavailability of 2 x
10- are operated in a 2 x 100% arrangement. Calcu­
late the unavailability of the system.

5. Weekly testing of a system of 15 switches has revealed
50 switch failures in 10 years operation. Calculate the
unavailability of a switch.

6. How often should a system of 12 dousing valves be tested
in 2rder to meet an unavailability target of 1.0 x
10- , if 15 valve failures have occurred during the
past 5 years?

7. A system of 12 dousing valves, tested monthly, has de­
veloped 10 failures of individual valves in 8 years
operation. Calculate the unavailability of an individ­
ual valve.

8. Calculate the annual risk of a nuclear accident at a
reactor, which, during 9 years operation, developed the
following faults:

3 unsafe failures of the regulating system, and

50 complete failures of the protective system, failures
of which are detected and corrected at the beginning of
each shift.
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9. At a certain nuclear generating station, threeindepen­
dent divisions of equipment protect against nuclear
accidents:

( ; \
\ - I equipment with a failure frequency of r-. ...,

U • ..J

( i i )

per annum,

protective equipment with unavailability of 2 x 10- 3 ,
and

(iii) containment equipment with unavailability of
5 x 10-3

Calculate the annual risk (frequency of)

a) an incident consisting of process failure combined
with simultaneous failure of either protective or
containment systems.

b) simultaneous failure of all three systems.

10. Monthly testing of 6 safety switches has revealed 8
failures of individual switches during 15 years opera­
tion.

a) Calculate the unavailability of a switch.

b) How, without altering the equipment, could the
unavailability in (a) be decreased by a factor of
about 30?

c) How often should the switches be tested if the per­
mitted unavailability of a switch is 10-2?

11.

--0
---0--....1

In the above system, a system failure consists of a
failure of either component A, or a failure of at least
two of s, C, D.
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Calculate the unreliability of the system, given compo­
nent unreliabilities,

QA = 0.05, and
QB = QC = QD = 0.1.

12. A pump designed for continuous operation has failed 6
times in 5 years operation, with total down time of 124
hours. Calculate the unavailability of

a) the pump

b) a system of three such pumps in a 3 x 50% parallel
arrangement.

13. Information

The permitted unavailability of the Douqlas Point liqht
water injection system is defined as 10=2 in accord-­
ance with predictions made in Appendix I of the Safety
Report. Before this system will provide injection flow,
the following components must actuate:

a) A level switch in either inlet header to indicate
the need for injection.

b) A pressure switch across appropriate headers to
indicate the direction of injection.

c) At least 5 isolating valves open to pass injection
flow.

1) Assume that the expected unavailability of the
injection system is

QT = QLS 2 + QPS + 5QPV where Q'l' = expected system
unavailability

QLS = expected level
switch unavailability

QpS = expected pressure
switch unavailabil i ty

QpV = expected isolating
valve unavailability
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2) Assume that injection system component failure
rates are predicted to be

Level switch failure rate A
LS = 0.02 per year

Pressure switch failure rate ApS ;;;:; 0.02 per year

Isolating valve failure rate Anu ;;;:; 0.05 per year
... v

Problem

a) What is the expected system unavailability if all
components are tested once per month and failure
rates are as predicted?

b) What is the expected system unavailability if all
components are tested once per month, and failure rates
of valves and pressure switches are as predicted,
but failure rates of level switches are double pre­
dicted rates?

NB The remainder of this assignment consists of uestions
abstracted ver atlm from recent AECB Nuclear General
Examinations (Shltt SuperVisors').

14. Question #9, February 1976

Suppose that over a period of four years, daily testing
of a safety system has revealed twenty faults which
would have prevented operation of the system if it had
been called upon to act. Assuming the faults were
repaired within a short time of being discovered, show
that this testing gives reasonable assurance that there
was no greater than a 1% probability of the fault exist­
ing at any given time. Qualitatively explain why the
demonstrated reliability of the system would be less if
the same number of faults were found by weekly testing.

15. Question #8, October 1976

a) During six years of operation, a power reactor
experienced the following independent faults:

two faults in the regulating system which rapidly
increased the power to such an extent that the
reactor was shut down by the protective system.

three faulLs which would have pr:evented uperatiun
of the protective system if it had been called on
to act, were detected by routine daily testing of
the protective systen.
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Assuming the faults were repaired within minutes of
being discovered, calculate the probability of a
runaway accident in this reactor.

b) During the same six years of operation, faults
occurred in the containment system as follows:

several incidents of inoperative air lock seals,
totalling 40 hours of loss of containment due to
defective air locks.

four faults in the containment logic system which
would have prevented effective containment in the
event of an accident. These faults were detected
in routine weekly testing and each time were
repaired within minutes of being discovered.

Calculate the probability for this reactor of a runaway
accident accompanied by release of radioactivity to the
environment.

16. Question #6(a), February 1977

Although safety systems must be extremely reliable, they
generally contain switches, relays, valves, etc., that
are relatively unreliable. Explain how an extremely
reliable system can be obtained and maintained when it
is composed of relatively unreliable components.

17. Question #7, June 1977

Give and explain three reasons why reactor safety sys­
tems should be tested routinely.

18. Question #9, February 1978

During five years of operation, a power reactor exper­
ienced the following independent faults:

three faults in the regulating system which rapidly
increased the power to such an extent that the
reactor was shut down by the protective system.

two faults which would have prevented operation of
the protective system if it had been called on to
act, were detected by routine daily testing of the
protective system.

Assuming the faults were repaired within minutes of
being discovered:
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a} calculate the expected frequency of runaway acci­
dents in this reactor,

b} calculate the probability of having, during one
year, one or more faults in the regulating system
which rapidly increase the power.

A partial table of exponential functions is attached for
your optional reference.

19. Question #5, June 1978

The above diagram is a schematic representation of the
typical dump valve arrangement for a reactor with moder­
ator dump. In 5 years of operation of this reactor, 6
failures (to open) of individual dump valves were found.
The dump valves are tested twice a week.

a} Calculate the unreliability of:

i) a dump valve
ii} a dump line.

bj If the correct operation ot 1 dump line is suffi­
cient to achieve an efficient dump, calculate the
unreliability of the dump system due to dump valve
fuilurcs.
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20. Question #6, October ,n~n

~~/O

I I I

o~ E~ F*
E~ F7 o~
f r J

The above diagram is a schematic representation of the
typical dump valve arrangement for a reactor with moder­
ator dump. The opening and closing of valves 0, E and F
are controlled by channels D, E and F respectively.
During 5 years of reactor operation, the electronics of
channels D, E and F were tested three times a week and 4
unsafe failures of individual channels were found.

a) Calculate the unreliability of a dump channel.

b) If the correct operation of 1 dump line is suffi­
cient to achieve an efficient dump, calculate the
unreliability of the dump system due to dump chan­
nel failures. (Show your reasoning.)

c) Suppose that during a test, channel F fails to
operate. Calculate the unreliability of the dump
system due to dump channel failures, if reactor
operation were to be maintained in spite of channel
F failure.

21. Question #7, February 1979

ok E~ FZ
E1 FY o~
t r T

~ne above a~agram is a ~~bemaLic representation of the
typical dump valve arrangement for a reactor with moder­
ator dump. The opening and closing of valves D, E and F
arc controlled by channels D, E and F respectively~ The
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correct operation of anyone pair of dump valves in ser­
ies is sufficient to achieve an efficient dump.

During 5 years of reactor operation, the control cir­
cuits of channels 0, E and F were each tested three
times a week and a total of 4 unsafe failures of indivi­
dual channels were found. Over the same period, the
dump valves were mechanically tested twice a week and a
total of 7 failures of individual dump valves to open
were found.

a) Calcula te:

i) the unreliability of the control circuit of a
dump channel;

ii) the mechanical unreliability of a dump valve.

b) Suppose that the control circuit of one channel
fails to operate during a test. The reactor con­
tinues operation wi th the defect uncorrected and,
due to operator error, the two dump valves associ­
ated with the defective channel are left in the
closed position.

i) Calculate the resulting unreliability of the
dump system.

ii) Suppose that the shift supervisor notices the
error and the defective channel is rejected
correctly, ie, the two dump valves associated
with the defective channel are opened. Calcu­
late the resulting unreliability of the dump
system.

L. Haacke
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